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ON THE FROBENIUS NORM OF THE INVERSE OF A NON-NEGATIVE

MATRIX

ELSA FRANKEL AND JOHN URSCHEL

Abstract. We prove a new lower bound for the Frobenius norm of the inverse of an non-negative
matrix. This bound is only a modest improvement over previous results, but is sufficient for fully
resolving a conjecture of Harwitz and Sloane, commonly referred to as the S-matrix conjecture, for
all dimensions larger than a small constant.

1. Introduction

Given a matrix A ∈ Rn×n, let ‖A‖F = trace(ATA)1/2 be the Frobenius norm and ‖A‖max =
maxi,j |Aij | be the max norm. These two norms satisfy the inequalities ‖A‖max ≤ ‖A‖F ≤ n‖A‖max,
which are tight for a matrix with only a single non-zero entry and a matrix with all entries equal,
respectively. Given a matrix with a fixed maximum entry size, one may ask similar questions about
the Frobenius norm of the inverse of the matrix. The Frobenius norm of the inverse can be arbitrarily
large as the smallest singular value of A tends to zero. A lower bound of ‖A−1‖F ≥ ‖A‖−1

max can be
easily produced using only the Cauchy-Schwarz inequality. Let 〈A,B〉F = trace(BTA) be the Frobenius
inner product, and recall that a matrix A is called a Hadamard matrix if A ∈ {±1}n×n and ATA = nI,
and called an S-matrix if A ∈ {0, 1}n×n and ATA = n+1

4 (I + 11T ), where 1 is the all-ones vector.

Proposition 1.1. Let A be a non-singular matrix. Then ‖A−1‖F ≥ ‖A‖−1
max, with equality if and only

if A is a multiple of a Hadamard matrix.

Proof. Without loss of generality, consider an n× n matrix A with ‖A‖max = 1. We have

n2 = 〈AT , A−1〉2F ≤ ‖A‖2F ‖A−1‖2F ≤ n2‖A‖2max‖A−1‖2F ,
where equality occurs throughout if and only if A ∈ {±1}n×n and AT = cA−1 for some constant c.
Multiplying AT = cA−1 by A implies that c = n and ATA = nI, so A is a Hadamard matrix. �

The same question regarding the minimum value of ‖A−1‖F for non-negative matrices was asked
by Harwitz and Sloane in 1976 [6, Sec. IV.B]. In particular, they conjectured that, for an n× n non-
negative, non-singular matrix A, ‖A−1‖F ≥ 2n

n+1‖A‖−1
max, with equality if and only if A is a positive

multiple of an S-matrix. We convert this conjecture into a theorem for n larger than a small constant.

Theorem 1.2 (Main Result). Let n ≥ 1000 and A be an n × n non-negative, non-singular matrix.
Then

‖A−1‖F ≥ 2n

n+ 1
‖A‖−1

max,

with equality if and only if A is a positive multiple of an S-matrix.
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2 FROBENIUS NORM OF INVERSE OF NON-NEGATIVE MATRIX

This conjecture originally arose from a problem in spectroscopy (see [5, 6] for details). In 1987,
Cheng proved this conjecture when n is odd, and obtained the slightly worse bound ‖A−1‖F >
2
√
n2−2n+2

n ‖A‖−1
max when n is even [1, Corollary 3.4]. The proof technique used relies on the Kiefer-

Wolfowitz equivalence theorem [4]. Drnovs̆ek provided a simpler proof of the same bounds using only
the Cauchy-Schwarz inquality and basic calculus [2]. Harwitz and Sloane’s conjecture later appeared in
Zhan’s Open problems in matrix theory, and was referred to as the S-matrix conjecture [7, Conjecture
11]. Since Cheng’s proof for n odd, the S-matrix conjecture has only been fully proven in a number
of special cases (see, for instance, [3, 8, 9]). This becomes even more surprising given the simplicity of
the techniques used here to prove the conjecture when n is even.

Our proof technique is as follows. First, in Section 2, we analyze the structure of even-dimensional
matrices B with ‖B−1‖F below our desired bound (Lemma 2.1). Any such matrix B must be nearly
binary, and B times a small perturbation of BT must have off-diagonal entries with fractional part
roughly 1/4 away from an integer. Then, in Section 3, we prove that, for n not too small, this can
never occur, i.e., the size of the perturbation to BT is too small to result in entries (of B times the
perturbed BT ) that are 1/4 away from an integer (Lemmas 3.1, 3.2, and 3.3). No effort was made
to optimize the requirement of n ≥ 1000, and the same argument provided below paired with some
additional casework and analysis can decrease this value significantly. However, proving the conjecture
for, say, n ≤ 8 would likely require casework specifically designed for small dimensions. We leave both
of these tasks to the motivated reader.

2. Properties of matrices that do not satisfy Theorem 1.2

First, we provide a sketch of Drnovs̆ek’s proof of Cheng’s result for n even (see [2] for details). Let
A ∈ Rn×n, n even, be a non-negative matrix with ‖A‖max ≤ 1,

F (A) =

[

0 1T

1
√

n
n−2

n
2A

−1

]

, G(A) =

[

0 1T

1

√

n−2
n

( 2(n−1)
n−2 I − 2

n11
T
)

AT

]

, and

H(A) =

√

n(n− 2)

2(n− 1)

[

√

n

n− 2

n

2
A−1 −

√

n− 2

n

(

2(n− 1)

n− 2
I − 2

n
11T

)

AT

]

.

By the Cauchy-Schwarz inequality,

n2(n2 − 2)2

(n− 2)2
= 〈F (A), G(A)〉2F ≤ ‖F (A)‖2F ‖G(A)‖2F =

(

2n+
n3

4(n− 2)
‖A−1‖2F

)

(2n+ h(A)),

where

h(A) =

∥

∥

∥

∥

√

n− 2

n

(

2n− 2

n− 2
I − 2

n
11T

)

AT

∥

∥

∥

∥

2

F

=
4(n− 1)2

n(n− 2)

n
∑

i=1

n
∑

j=1

A2
ij −

4

n

n
∑

i=1

( n
∑

j=1

Aij

)2

.

Taking the derivative of h(A) with respect to an entry Aij reveals that, for non-negative matrices A
with ‖A‖max ≤ 1, h(A) is maximized by some A ∈ {0, 1}n×n. When A ∈ {0, 1}n×n, h(A) is simply a
function of the row sums A1, and is maximized when A1 = n

21, producing an upper bound of

h(A) ≤ n(n2 − 2n+ 2)

n− 2
.

Combining this bound with the previous one above immediately produces the lower bound ‖A−1‖F ≥
2
√
n2−2n+2

n ‖A‖−1
max. The proof when n is odd is similar, but with

[

1 1
T

1 −
n+1
2 A−1

]

and

[

1 1
T

1 −
(

2I−
2

n+111
T

)

AT

]

in place of F (A) and G(A). When n is odd, this same argument achieves the desired bound ‖A−1‖F ≥
2n
n+1‖A‖−1

max, and it follows quickly that all inequalities are tight if and only if A is an S-matrix. Again,

we refer the reader to [2] for additional details regarding Drnovs̆ek’s proof of Cheng’s result.
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Here, we consider the properties of an invertible non-negative matrix B ∈ Rn×n, n even, for which
‖B−1‖F ≤ 2n

n+1‖B‖−1
max. In such a case, the argument presented above must be nearly tight, leading

to structure in B. In particular, B must almost be in {0, 1}n×n, its row sums must almost be n
2 , and

F (B) must almost equal G(B). We make these observations rigorous below.

Lemma 2.1. Let n > 2 be even, B be an n× n non-negative matrix with ‖B‖max ≤ 1 and ‖B−1‖F ≤
2n
n+1 , r = B1− (n−1)2

2(n−2)1, and c = n(n2−2n+2)
n−2 − h(B). Then 0 ≤ c < 1,

(1) ‖r‖22 +
(n− 1)2

(n− 2)

n
∑

i,j=1

Bij(1−Bij) =
cn

4
+

n

4(n− 2)2
,

(2) ‖H(B)‖2F ≤ n(n− 2)

4(n− 1)2

[

n(n2 − 2n− 2)

(n− 2)(n+ 1)2
− c

]

,

(3) B
(

BT +H(B)
)

=
n2

4(n− 1)
I +

(n− 1)3

4n(n− 2)
11T +

n− 1

2n
(r1+ 1rT ) +

n− 2

n(n− 1)
rr

T .

Proof. We first estimate c. From our previous analysis of h(·), c ≥ 0. We have

n2(n2 − 2)2

(n− 2)2
= 〈F (B), G(B)〉2F ≤ ‖F (B)‖2F ‖G(B)‖2F ≤ n(n4 + 2n3 − 6n− 4)

(n− 2)(n+ 1)2

(

n(n2 − 2)

n− 2
− c

)

,

implying that

c ≤ n(n2 − 2)

n− 2

(

1− (n2 − 2)(n+ 1)2

n4 + 2n3 − 6n− 4

)

=
n(n2 − 2)(n2 − 2n− 2)

(n− 2)(n4 + 2n3 − 6n− 4)
< 1.

Now, consider Property (1). We have

h(B) =
4(n− 1)2

n(n− 2)

n
∑

i,j=1

B2
ij −

4

n

n
∑

i=1





n
∑

j=1

Bij





2

=
4(n− 1)2

n(n− 2)

n
∑

i=1

[B1]i −
4

n

n
∑

i=1

[B1]2i −
4(n− 1)2

n(n− 2)

n
∑

i,j=1

Bij(1 −Bij)

=
(n− 1)4

(n− 2)2
− 4

n

n
∑

i=1

(

[B1]i −
(n− 1)2

2(n− 2)

)2

− 4(n− 1)2

n(n− 2)

n
∑

i,j=1

Bij(1 −Bij),

implying that
n
∑

i=1

(

[B1]i −
(n− 1)2

2(n− 2)

)2

+
(n− 1)2

(n− 2)

n
∑

i,j=1

Bij(1−Bij) =
cn

4
+

n

4(n− 2)2
.

Next, consider Property (2). We have

4(n− 1)2

n(n− 2)
‖H(A)‖2F = ‖F (B)−G(B)‖2F = ‖F (B)‖2F+‖G(B)‖2F−2〈F (B), G(B)〉F ≤ n(n2 − 2n− 2)

(n− 2)(n+ 1)2
−c.

Finally, consider Property (3). We have

BT +H(B) =
n2

4(n− 1)
B−1 +

n− 1

2n
11T − n− 2

n(n− 1)
1rT .

From here, our desired result follows quickly by multiplying by B:

B
(

BT +H(B)
)

=
n2

4(n− 1)
I +

(n− 1)3

4n(n− 2)
11T +

n− 1

2n
(r1+ 1rT ) +

n− 2

n(n− 1)
rr

T .

�
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3. A proof of Theorem 1.2 for n sufficiently large

In the previous section we proved a number of properties regarding a non-negative matrix B ∈ R
n×n,

n even, with ‖B−1‖F ≤ 2n
n+1 . Here, through a sequence of three lemmas, we conclude that when n is

larger than a small constant, no such matrix B can exist.

Lemma 3.1. Let n, t ∈ N, t ≥ 3, n ≥ 2t and n be even, B be an n × n non-negative matrix with

‖B‖max ≤ 1 and ‖B−1‖F ≤ 2n
n+1 , r = B1 − (n−1)2

2(n−2)1, and C = round(B) (i.e., Cij = round(Bij)).

Then there exist t+ 1 distinct indices i = i1, . . . , it+1 ∈ {1, . . . , n} such that [C1]i =
n
2 ,

n
∑

j=1

[H(B)]2ji <
1

4(n− t)
,

n
∑

j=1

|Bij − Cij | ≤
1

4(n− t)− 2
, and ri ≤

1

2(n− 2)
+

1

4(n− t)− 2
.

Proof. By Lemma 2.1,

4

n
‖r‖22 +

4(n− 1)2

n(n− 2)

n
∑

i,j=1

Bij(1−Bij) +
4(n− 1)2

n(n− 2)

n
∑

i,j=1

[H(B)]2ji ≤
1

(n− 2)2
+

n(n2 − 2n− 2)

(n− 2)(n+ 1)2
< 1

for n ≥ 6. Therefore, there exist t+ 1 distinct indices i = i1, . . . , it+1 with

4

n
r
2
i +

4(n− 1)2

n(n− 2)

n
∑

j=1

Bij(1 −Bij) +
4(n− 1)2

n(n− 2)

n
∑

j=1

[H(B)]2ji <
1

n− t
,

and so
∑n

j=1[H(B)]2ji <
1

4(n−t) . In addition, for such an index i,

n
∑

j=1

|Bij − Cij | ≤ 2

n
∑

j=1

Bij(1−Bij) <
1

2(n− t)
,

and so

|[B1]i − round([B1]i)| ≤
n
∑

j=1

|Bij − Cij | ≤
(

1

1− 1
2(n−t)

)

n
∑

j=1

Bij(1−Bij) <
1

4(n− t)− 2
.

For i ∈ {i1, . . . , it+1}, we also have

ri <

√

n

4(n− t)
< 1−

(

(n− 1)2

2(n− 2)
− n

2

)

− 1

4(n− t)− 2

for n ≥ 2t and t ≥ 3, implying that round([B1]i) = [C1]i =
n
2 . This leads to the stronger bound

ri <

(

(n− 1)2

2(n− 2)
− n

2

)

+
1

4(n− t)− 2
=

1

2(n− 2)
+

1

4(n− t)− 2
.

�

Lemma 3.2. Let n, t ∈ N, t ≥ 4 and n ≥ 4t be even, and B be an n × n non-negative matrix with
‖B‖max ≤ 1 and ‖B−1‖F ≤ 2n

n+1 . Then there exist a matrix Ĉ ∈ {0, 1}(t+1)×n and a vector y ∈ Rn

such that ĈĈT = ⌈n
4 ⌉I + ⌊n

4 ⌋11T , ‖y‖22 ≤ [4(n− t)]−1,
∣

∣

∣

∣

[Ĉy]j −
1

4

∣

∣

∣

∣

<
n− 1

4(n− 2)n
+

5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

for j = 1, . . . , t, and

∣

∣

∣[Ĉy]t+1

∣

∣

∣ <
2n2 − 4n+ 1

4(n− 2)(n− 1)n
+

5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

.
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Proof. Using C = round(B), r = B1− (n−1)2

2(n−2)1, and the t+1 entries i1, . . . , it+1 ⊂ {1, . . . , n} described

in Lemma 3.1, we aim to estimate (CCT )ij and [C(CT +H(B))]ij for i, j ∈ {i1, . . . , it+1}, i 6= j, and
[C(CT + H(B))]ii for i ∈ {i1, . . . , it+1}, and use this information to conclude that the t + 1 rows of
C corresponding to i1, . . . , it+1, paired with a column of H(B), have our desired property. For the
remainder of the proof, we assume that i, j ∈ {i1, . . . , it+1}. By Lemma 2.1, for i 6= j,

[

(B − C + C)
(

BT − CT + CT
)]

ij
=

(n− 1)3

4n(n− 2)
+

n− 1

2n
(ri + rj) +

n− 2

n(n− 1)
rirj − (BH(B))ij ,

implying, by Lemma 3.1, that
∣

∣

∣

∣

(CCT )ij −
(n− 1)3

4n(n− 2)

∣

∣

∣

∣

≤
∣

∣[(B − C)CT ]ij
∣

∣+
∣

∣[B(B − C)T ]ij
∣

∣+max
i

|ri|+ |(BH(B))ij |

≤ 2max
i

|[(B − C)1]i|+
[

1

2(n− 2)
+

1

4(n− t)− 2

]

+

√

√

√

√

n
∑

k=1

B2
ik

√

√

√

√

n
∑

k=1

[H(B)]2kj

<
1

2(n− t)− 1
+

1

2(n− 2)
+

1

4(n− t)− 2
+

1

2

√

n

n− t
.

When t ≥ 4 and n ≥ 4t,

1

2(n− t)− 1
+

1

2(n− 2)
+

1

4(n− t)− 2
≤ 5

4(n− t)
,

and so
∣

∣

∣

∣

(CCT )ij −
(n− 1)3

4n(n− 2)

∣

∣

∣

∣

<
5

4(n− t)
+

1

2

√

n

n− t
<

7

10
.

for t ≥ 4 and n ≥ 4t. Because (CCT )ij is an integer and
∣

∣

∣

∣

(n− 1)3

4n(n− 2)
− round

(

(n− 1)3

4n(n− 2)

)∣

∣

∣

∣

≤ 1

4
+

1

8n
+

1

8(n− 2)
<

3

10
for n ≥ 16,

(CCT )ij =
⌊

n
4

⌋

. A similar analysis provides an estimate for [C(CT +H(B))]ij , i 6= j, and [C(CT +
H(B))]ii:
∣

∣

∣

∣

[

C
(

CT +H(B)
)]

ij
− (n− 1)3

4n(n− 2)

∣

∣

∣

∣

≤
∣

∣[(B − C)CT ]ij
∣

∣+
∣

∣[B(B − C)T ]ij
∣

∣+max
i

|ri|+ |[(B − C)H(B)]ij |

<
5

4(n− t)
+

n
∑

k=1

|[B − C]ik|

√

√

√

√

n
∑

k=1

[H(B)]2kj

<
5

4(n− t)
+

(

1

4(n− t)− 2

)

1

2
√
n− t

=
5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

,

and
∣

∣

∣

∣

[

C
(

CT +H(B)
)]

ii
−
(

n2

4(n− 1)
+

(n− 1)3

4n(n− 2)

)∣

∣

∣

∣

<
5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

.

Let y equal (−1)n/2+1 times column it+1 of H(B) and Ĉ ∈ {0, 1}(t+1)×n be the restriction of C to the
rows {i1, . . . , it+1}. We have

∣

∣

∣

∣

n2

4(n− 1)
+

(n− 1)3

4n(n− 2)
−
[

ĈĈT
]

ii

∣

∣

∣

∣

=

∣

∣

∣

∣

n2

4(n− 1)
+

(n− 1)3

4n(n− 2)
− n

2

∣

∣

∣

∣

=
2n2 − 4n+ 1

4(n− 2)(n− 1)n
and
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∣

∣

∣

∣

(n− 1)3

4n(n− 2)
− (−1)n/2+1

4
−
[

ĈĈT
]

ij

∣

∣

∣

∣

=

∣

∣

∣

∣

(n− 1)3

4n(n− 2)
− (−1)n/2+1

4
−
⌊n

4

⌋

∣

∣

∣

∣

=
n− 1

4(n− 2)n
for i 6= j,

completing the proof. �

Lemma 3.3. Let t = 50 and n ∈ N, n ≥ 1000, be even. There does not exist a matrix Ĉ ∈ {0, 1}(t+1)×n

and a vector y ∈ R
n such that ĈĈT = ⌈n

4 ⌉I + ⌊n
4 ⌋11T , ‖y‖22 ≤ [4(n− t)]−1,

∣

∣

∣

∣

[Ĉy]j −
1

4

∣

∣

∣

∣

<
n− 1

4(n− 2)n
+

5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

for j = 1, . . . , t, and

∣

∣

∣[Ĉy]t+1

∣

∣

∣ <
2n2 − 4n+ 1

4(n− 2)(n− 1)n
+

5

4(n− t)
+

1

(8(n− t)− 4)
√
n− t

.

Proof. Suppose that such a Ĉ and y exist. We note that, for t = 50 and n ≥ 1000, the above inequalities
imply that |[Ĉy]j − 1

4 | < 1
500 for j = 1, . . . , 50 and |[Ĉy]51| < 1

500 . The matrix

Y =
⌈n

4

⌉−1/2

Ĉ − 1

2

(

⌈n

4

⌉−1/2

+

√

⌈n

4

⌉−1

− 4

n

)

11T ∈ C
51×n

has orthonormal rows

Y Y ∗ =
⌈n

4

⌉−1
(

Ĉ − 1

2
11T

)(

Ĉ − 1

2
11T

)T

+
n

4

(

4

n
−
⌈n

4

⌉−1
)

11T = I,

and so ‖Y y‖22 ≤ ‖y‖22 ≤ [4(n− 50)]−1. Let α = 1T
y. ‖Y y‖22 is given by

‖Y y‖22 =
51
∑

i=1

∣

∣

∣

∣

∣

⌈n

4

⌉−1/2

[Ĉy]i −
α

2

(

⌈n

4

⌉−1/2

+

√

⌈n

4

⌉−1

− 4

n

)∣

∣

∣

∣

∣

2

=
51
∑

i=1

(

⌈n

4

⌉−1 (

[Ĉy]i −
α

2

)2

+
α2

4

(

4

n
−
⌈n

4

⌉−1
))

=
51

n
α2 −

⌈n

4

⌉−1
(

51
∑

i=1

[Ĉy]i

)

α+
⌈n

4

⌉−1 51
∑

i=1

[Ĉy]2i ,

and so

α2 − n
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]i

)

α+
n
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]2i

)

≤ n

204(n− 50)
,

or, equivalently,
(

α− n

2
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]i

))2

≤ n

204(n− 50)
− n
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]2i

)

+
n2

4
⌈

n
4

⌉2

(

1

51

51
∑

i=1

[Ĉy]i

)2

.

Using the above bounds on [Ĉy]j implies that

1

51

51
∑

i=1

[Ĉy]2i ≥ 50

51

(

1

4
− 1

500

)2

=
1922

31875

and

1

51

51
∑

i=1

[Ĉy]i ∈
[

50

51

(

1

4
− 1

500

)

− 1

51

1

500
,
50

51

(

1

4
+

1

500

)

+
1

51

1

500

]

=

[

6199

25500
,
6301

25500

]

.
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Noting that, for n ≥ 1000 even, n
4

⌈

n
4

⌉−1 ∈
[

1− 1
501 , 1

]

, leads to the lower bound

α ≥ n

2
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]i

)

−

√

√

√

√

n

204(n− 50)
− n
⌈

n
4

⌉

(

1

51

51
∑

i=1

[Ĉy]2i

)

+
n2

4
⌈

n
4

⌉2

(

1

51

51
∑

i=1

[Ĉy]i

)2

≥ 2

(

1− 1

501

)

6199

25500
−

√

1000

204(1000− 50)
− 4

(

1− 1
501

) 1922

31875
+ 4

(

6301

25500

)2

>
39

100
.

Let ŷ ∈ Rn/2 denote the restriction of y to the n/2 indices i ∈ {1, . . . , n} where Ĉ51,i = 0. We have

0.388 =
39

100
− 1

500
<
∣

∣

∣α− [Ĉy]51

∣

∣

∣ ≤ ‖ŷ‖1 ≤
√

n

2
‖ŷ‖2 ≤

√

n

8(n− 50)
≤
√

1000

8(1000− 50)
< 0.37,

a contradiction. �

The combination of Lemma 3.2 and Lemma 3.3 implies that ‖B−1‖F > 2n
n+1 for all even n ≥ 1000.

Combining this with Cheng’s proof of the conjecture for n odd [1, Corollary 3.4] completes the proof
of Theorem 1.2.
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